2023年:
[10]Bi, Y., Jia, X., Hao, Y., Du, X., Lu, D., 2023. Transient of flow regimes and slip boundary analysis of water and gas in nano clay pores. Mol. Simulat., 49(16): 1519-1530. https://doi.org/10.1080/08927022.2023.2246578
[9]Dong, Y., Hao, Y., Lu, D., 2023. Evaluation of the fracturing fluid flowback based on perforation clusters for horizontal shale gas wells using data-mining methods. Energy Rep., 9: 5937-5951. https://doi.org/10.1016/j.egyr.2023.05.033
[8]Dong, Y., Hao, Y., Lu, D., 2023. Identifying the controlling geological and engineering factors of shale gas production using deep learning models: a case study from Weiyuan, China. Petrol. Sci. Technol.: 1-20. https://doi.org/10.1080/10916466.2023.2281976
[7]Du, X., Wang, M.-L., Zhao, L.-A., Wang, Z.-Y., Xiu, C.-H., Jia, G.-L., Li, Q.-Y., Lu, D.-T., 2023. Field experiment of stress sensitivity effect in the Mabidong CBM block, southern Qinshui Basin, China. Geoenergy Sci. Eng., 222: 211441. https://doi.org/10.1016/j.geoen.2023.211441
[6]Jin, J., Lu, D., 2023. Study on the inter-porosity transfer rate and producing degree of matrix in fractured-porous gas reservoirs. Open Phys., 21(1). https://doi.org/10.1515/phys-2022-0247
[5]Jin, J., Wang, X., Liu, X., Xu, Y., Lu, D., 2023. A novel hydraulic fracturing model for the fluid-driven fracture propagation in poroelastic media containing the natural cave. Phys. Fluids, 35(9): 096602. https://doi.org/10.1063/5.0160672
[4]Li, X., Huang, X., Yu, S., Lu, D., Du, X., 2023. Numerical study on the transient pressure response of the vug in carbonate reservoirs. Petrol. Sci. Technol.: 1-20. 10.1080/10916466.2023.2190772
[3]Sun, G., Li, P., Du, D., Song, T., Lu, D., 2023. Numerical simulation of in-depth profile control for dispersed particle gel in heterogeneous reservoirs. Front. Energy Res., 11. 10.3389/fenrg.2023.1106191
[2]Wang, X., Li, P., Qi, T., Li, L., Li, T., Jin, J., Lu, D., 2023a. A framework to model the hydraulic fracturing with thermo-hydro-mechanical coupling based on the variational phase-field approach. Comput. Methods Appl. Mech. Eng., 417: 116406. https://doi.org/10.1016/j.cma.2023.116406
[1]Wang, X., Lu, D., Li, P., 2023b. A novel hybrid model for hydraulic fracture simulation based on peridynamic theory and extended finite element method. Theor. Appl. Fract. Mec., 123: 103731. https://doi.org/10.1016/j.tafmec.2022.103731
2022年:
[6]Du, X., Zhang, Y., Zhou, C., Su, Y., Li, Q., Li, P., Lu, Z., Xian, Y., Lu, D., 2022. A novel method for determining the binomial deliverability equation of fractured caved carbonate reservoirs. J. Petrol. Sci. Eng., 208: 109496. https://doi.org/10.1016/j.petrol.2021.109496
[5]Du, X., Li, Q., Li, P., Xian, Y., Zheng, Y., Lu, D., 2022. A novel pressure and rate transient analysis model for fracture-caved carbonate reservoirs. J. Petrol. Sci. Eng., 208: 109609. https://doi.org/10.1016/j.petrol.2021.109609
[4]Du, X., Li, Q., Chen, Y., Li, P., Xian, Y., Lu, D., 2022. A novel parametric coupled pressure and temperature inversion method for combined perforation and well test system. J. Nat. Gas Sci. Eng., 101: 104548. https://doi.org/10.1016/j.jngse.2022.104548
[3]张鑫, 曹渊, 王铁良, 何增, 郝有志, 卢德唐, 2022. 多孔介质中强间断条件下多组分物质渗流模拟. 中国科学(物理学 力学 天文学), 52(4): 96-109.
[2]Jin, J., Li, Q., Lu, D., 2022. Pressure transient analysis for a well drilling into a large-size cave in fracture-caved carbonate gas reservoirs. Geofluids, 2022: 7217560. https://doi.org/10.1155/2022/7217560
[1]Wang, Q., Xu, X., Lu, D., 2022. Synthesis of cobalt-anchored n-doped carbon as an oxygen reduction reaction catalyst for aluminum-air batteries. Appl. Catal. A-Gen., 646: 118847. https://doi.org/10.1016/j.apcata.2022.118847
2021年:
[6]Dong, Y., Tian, W., Li, P., Zeng, B., Lu, D., 2021. Numerical investigation of complex hydraulic fracture network in naturally fractured reservoirs based on the XFEM. J. Nat. Gas Sci. Eng., 96: 104272. https://doi.org/10.1016/j.jngse.2021.104272
[5]Cai, H., Li, P., Feng, M., Hao, Y., Lu, D., Xian, Y., 2021. A fully mass conservative numerical method for multiphase flow in fractured porous reservoirs. Transort Porous Med., 139(2): 171-184. https://doi.org/10.1007/s11242-021-01636-9
[4]Li, Q., Du, X., Tang, Q., Xu, Y., Li, P., Lu, D., 2021. A novel well test model for fractured vuggy carbonate reservoirs with the vertical bead-on-a-string structure. J. Petrol. Sci. Eng., 196: 107938. https://doi.org/10.1016/j.petrol.2020.107938
[3]Du, X., Li, Q., Xian, Y., Lu, D., 2021. Fully implicit and fully coupled numerical scheme for discrete fracture modeling of shale gas flow in deformable rock. J. Petrol. Sci. Eng., 205: 108848. https://doi.org/10.1016/j.petrol.2021.108848
[2]Jia, X., Hao, Y., Li, P., Zhang, X., Lu, D., 2021. Nanoscale deformation and crack processes of kaolinite under water impact using molecular dynamics simulations. Appl. Clay Sci., 206: 106071. https://doi.org/10.1016/j.clay.2021.106071
[1]王梦璐, 高亮, 杨晓儒, 张晓文, 阮东, 刘慧, 卢德唐, 2021. 煤层应力敏感效应的现场试验. 实验力学, 36(6): 713-724. 10.7520/1001-4888-20-249.
2020年:
[7]Cao, Z., Li, P., Li, Q., Lu, D., 2020. Integrated workflow of temperature transient analysis and pressure transient analysis for multistage fractured horizontal wells in tight oil reservoirs. Int. J. Heat Mass Tran., 158: 119695. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119695
[6]Du, X., Li, Q., Lu, Z., Li, P., Xian, Y., Xu, Y., Li, D., Lu, D., 2020. Pressure transient analysis for multi-vug composite fractured vuggy carbonate reservoirs. J. Petrol. Sci. Eng., 193: 107389. https://doi.org/10.1016/j.petrol.2020.107389
[5]Zeng, B., Lu, D., Zou, Y., Zhou, J., Li, S., Li, N., Cao, Z., 2020. Experimental study of the simultaneous initiation of multiple hydraulic fractures driven by static fatigue and pressure shock. Rock Mech. Rock Eng., 53(11): 5051-5067. https://doi.org/10.1007/s00603-020-02190-4
[4]Yin, R., Li, Q., Li, P., Lu, D., 2020. Parameter identification of multistage fracturing horizontal well based on pso-rbf neural network. Sci. Programming, 2020: 6810903. https://doi.org/10.1155/2020/6810903
[3]Yin, R., Li, Q., Li, P., Lu, D., 2020. A novel method for matching reservoir parameters based on particle swarm optimization and support vector machine. Math. Probl. Eng., 2020: 7542792. https://doi.org/10.1155/2020/7542792
[2]Li, X., Xu, S., Hao, Y., Li, D., Lu, D., 2020. Gas transport in shale nanopores with miscible zone. Geofluids, 2020: 6410614. https://doi.org/10.1155/2020/6410614
[1]曹植纲, 郑德温, 刘建武, 何力, 卢德唐, 2020. 地热井口数据反演及高效利用. 太阳能学报, 41(8): 7-14.
2019年:
[8]Du, X., Lu, Z., Li, D., Xu, Y., Li, P., Lu, D., 2019. A novel analytical well test model for fractured vuggy carbonate reservoirs considering the coupling between oil flow and wave propagation. J. Petrol. Sci. Eng., 173: 447-461. https://doi.org/10.1016/j.petrol.2018.09.077
[7]Tian, W., Li, P., Dong, Y., Lu, Z., Lu, D., 2019. Numerical simulation of sequential, alternate and modified zipper hydraulic fracturing in horizontal wells using xfem. J. Petrol. Sci. Eng., 183: 106251. https://doi.org/10.1016/j.petrol.2019.106251
[6]Liu, J., Lu, D., Li, P., 2019. Nano-scale dual-pore-shape structure and fractal characteristics of transitional facies shale matrix. J. Nat. Gas Sci. Eng., 68: 102907. https://doi.org/10.1016/j.jngse.2019.102907
[5]Dong, Y., Li, P., Tian, W., Xian, Y., Lu, D., 2019. An equivalent method to assess the production performance of horizontal wells with complicated hydraulic fracture network in shale oil reservoirs. J. Nat. Gas Sci. Eng., 71: 102975. https://doi.org/10.1016/j.jngse.2019.102975
[4]Hao, Y., Jia, X., Lu, Z., Lu, D., Li, P., 2019. Water film or water bridge? Influence of self-generated electric field on coexisting patterns of water and methane in clay nanopores. J. Phys. Chem. C, 123(36): 22656-22664. https://doi.org/10.1021/acs.jpcc.9b06519
[3]Jia, Z., Li, D., Xue, Z., Lu, D., 2019. Development of a fully implicit simulator for surfactant-polymer flooding by applying the variable substitution method. Int. J. Oil Gas Coal T., 21(1): 1-25. https://www.inderscienceonline.com/doi/abs/10.1504/IJOGCT.2019.099520
[2]Tian, W., Li, P., Lu, Z., Lu, D., 2019. Experimental investigation and numerical simulation of viscous fingering in porous media during co2 flooding. J. Porous. Media, 22(12): 1493-1506. https://www.dl.begellhouse.com/journals/49dcde6d4c0809db,5ad37e36295b32fc,4728f5522470a4fd.html
[1]孙清佩, 张志镇, 李培超, 孙自昱, 卢德唐, 高峰, 2019. 黑色页岩动载破坏的层理效应及损伤本构模型研究. 岩石力学与工程学报, 38(7): 1319-1331.
2018年:
[10]Xu, C., Li, P., Lu, Z., Liu, J., Lu, D., 2018. Discrete fracture modeling of shale gas flow considering rock deformation. J. Nat. Gas Sci. Eng., 52: 507-514. https://doi.org/10.1016/j.jngse.2018.01.035
[9]Li, Q., Li, P., Pang, W., Li, D., Liang, H., Lu, D., 2018. A new method for production data analysis in shale gas reservoirs. J. Nat. Gas Sci. Eng., 56: 368-383. https://doi.org/10.1016/j.jngse.2018.05.029
[8]Li, Q., Li, P., Pang, W., Bi, Q., Du, Z., Li, X., Lu, D., 2018. A novel analytical method to calculate the amounts of free and adsorbed gas in shale gas production. Math. Probl. Eng., 2018: 2091695. https://doi.org/10.1155/2018/2091695
[7]Hao, Y., Yuan, L., Li, P., Zhao, W., Li, D., Lu, D., 2018. Molecular simulations of methane adsorption behavior in illite nanopores considering basal and edge surfaces. Energ. Fuel, 32(4): 4783-4796. https://doi.org/10.1021/acs.energyfuels.8b00070
[6]Cai, H., Li, P., Ge, Z., Xian, Y., Lu, D., 2018. A new method to determine varying adsorbed density based on gibbs isotherm of supercritical gas adsorption. Adsorpt. Sci. Technol., 36(9-10): 1687-1699. https://doi.org/10.1177/0263617418802665
[5]杜鑫, 卢志炜, 李冬梅, 徐燕东, 李培超, 卢德唐, 2019. 缝洞型油藏波动和流动耦合模型井底压力分析. 应用数学和力学, 40(04): 355-374.
[4]杜鑫, 李冬梅, 徐燕东, 卢志炜, 李培超, 卢德唐, 2018. 井洞相连的缝洞型油藏试井新模型. 水动力学研究与进展:A辑, 33(05): 552-561.
[3]Yin, R., Li, Q., Li, P., Guo, Y., An, Y., Lu, D., 2018. Gpu-based computation of formation pressure for multistage hydraulically fractured horizontal wells in tight oil and gas reservoirs. Math. Probl. Eng., 2018: 2582797. https://doi.org/10.1155/2018/2582797
[3]Li, Q., Li, P., Pang, W., Huang, J., Liang, H., Lu, D., 2018. A method for production data analysis considering significant discontinuities in unconventional reservoirs. J. Geophys. Eng., 15(5): 1835-1842. https://doi.org/10.1088/1742-2140/aab939
[2]Tian, W., Li, P., Liu, Y., Lu, Z., Lu, D., 2018. The simulation of viscous fingering by using a diffusion-limited-aggregation model during co2 flooding. J. Porous. Media, 21(6): 483-497. https://www.dl.begellhouse.com/journals/49dcde6d4c0809db,5558a3db31af084c,4dcfe2923c83f57c.html
[1]温杰雄, 田伟, 毕全福, 李雪彬, 卢德唐, 2018. 基于数字滤波的压裂停泵数据反演方法. 中国科学技术大学学报, 48(5): 392-399.
2017年及以前:
[1]Xu, C., Li, P., Lu, D., 2017. Production performance of horizontal wells with dendritic-like hydraulic fractures in tight gas reservoirs. J. Petrol. Sci. Eng., 148: 64-72. https://doi.org/10.1016/j.petrol.2016.09.039
[2]Liu, J., Li, P., Sun, Z., Lu, Z., Du, Z., Liang, H., Lu, D., 2017. A new method for analysis of dual pore size distributions in shale using nitrogen adsorption measurements. Fuel, 210: 446-454. https://doi.org/10.1016/j.fuel.2017.08.067
[3]Li, X., Mariethoz, G., Lu, D., Linde, N., 2016. Patch-based iterative conditional geostatistical simulation using graph cuts. Water Resour. Res., 52(8): 6297-6320. https://doi.org/10.1002/2015WR018378
[4]Zhang, L., Li, D., Lu, D., Zhang, T., 2015. A new formulation of apparent permeability for gas transport in shale. J. Nat. Gas Sci. Eng., 23: 221-226. https://doi.org/10.1016/j.jngse.2015.01.042
[5]Zhang, L., Li, D., Wang, L., Lu, D., 2015. Simulation of gas transport in tight/shale gas reservoirs by a multicomponent model based on pebi grid. J. Chem., 2015: 572434. https://doi.org/10.1155/2015/572434
[6]Li, D., Xu, C., Wang, J. Y., Lu, D., 2014. Effect of knudsen diffusion and langmuir adsorption on pressure transient response in tight- and shale-gas reservoirs. J. Petrol. Sci. Eng., 124: 146-154. https://doi.org/10.1016/j.petrol.2014.10.012
[7]Zhang, L., Li, D., Li, L., Lu, D., 2014. Development of a new compositional model with multi-component sorption isotherm and slip flow in tight gas reservoirs. J. Nat. Gas Sci. Eng., 21: 1061-1072. https://doi.org/10.1016/j.jngse.2014.10.029
[8]Huang, T., Li, X., Zhang, T., Lu, D.-T., 2013. Gpu-accelerated direct sampling method for multiple-point statistical simulation. Comput. Geosc., 57: 13-23. https://doi.org/10.1016/j.cageo.2013.03.020
[9]Lu, D., Zhang, T., Yang, J., Li, D., Kong, X., 2009. A reconstruction method of porous media integrating soft data with hard data. Chinese Sci. Bull., 54(11): 1876-1885. https://doi.org/10.1007/s11434-009-0327-8